OFFSET
0,2
COMMENTS
Also known as the mta net.
This is one of the Laves tilings.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Tom Karzes, Tiling Coordination Sequences
Reticular Chemistry Structure Resource (RCSR), The mta tiling (or net)
N. J. A. Sloane, The Dual(3.4.6.4) tiling
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
Theorem: For n>0, a(n) = 9*n-6 if n is even, a(n) = 9*n-3 if n is odd.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)*(1 - x^2)).
First differences are 1, 5, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, ...
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Colin Barker, Jan 25 2018
a(n) = 6*floor((3n-1)/2) for n > 0. - M. F. Hasler, Jan 11 2022
MAPLE
f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 9*n-6 else 9*n-3; fi; end;
[seq(f6(n), n=0..80)];
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 1, -1}, {6, 12, 24}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
PROG
(PARI) Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
(PARI) apply( {A298033(n)=if(n, n*3\/2*6-6, 1)}, [0..66]) \\ M. F. Hasler, Jan 11 2022
CROSSREFS
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 21 2018, corrected Jan 24 2018.
STATUS
approved