login
A298031
Coordination sequence of Dual(3.4.6.4) tiling with respect to a tetravalent node.
22
1, 4, 10, 16, 30, 36, 48, 54, 66, 72, 84, 90, 102, 108, 120, 126, 138, 144, 156, 162, 174, 180, 192, 198, 210, 216, 228, 234, 246, 252, 264, 270, 282, 288, 300, 306, 318, 324, 336, 342, 354, 360, 372, 378, 390, 396, 408, 414, 426, 432, 444, 450, 462, 468, 480, 486, 498, 504, 516, 522, 534, 540
OFFSET
0,2
COMMENTS
Also known as the mta net.
This is one of the Laves tilings.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020
LINKS
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Reticular Chemistry Structure Resource (RCSR), The mta tiling (or net)
N. J. A. Sloane, The Dual(3.4.6.4) tiling
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
FORMULA
Theorem: For n >= 4, a(n) = 9*n-6 if n is even, otherwise a(n) = 9*n-9.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: -(2*x^6 - 8*x^4 - 3*x^3 - 5*x^2 - 3*x - 1) / ((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4. - Colin Barker, Jan 25 2018
a(n) = 6*A007494(n-1), n>3. - R. J. Mathar, Jan 29 2018
MAPLE
f4:=proc(n) local L; L:=[1, 4, 10, 16];
if n<4 then L[n+1] elif (n mod 2) = 0 then 9*n-6 else 9*n-9; fi;
end;
[seq(f4(n), n=0..80)];
MATHEMATICA
Join[{1, 4, 10, 16}, LinearRecurrence[{1, 1, -1}, {30, 36, 48}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
PROG
(PARI) Vec((1 + 3*x + 5*x^2 + 3*x^3 + 8*x^4 - 2*x^6) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
CROSSREFS
Cf. A008574, A298032 (partial sums), A298029 (for a trivalent node), A298033 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Sequence in context: A167346 A307274 A027430 * A027425 A024992 A224966
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 21 2018; extended with formula, Jan 24 2018.
STATUS
approved