login
A298026
Coordination sequence of Dual(3.6.3.6) tiling with respect to a hexavalent node.
22
1, 6, 6, 18, 12, 30, 18, 42, 24, 54, 30, 66, 36, 78, 42, 90, 48, 102, 54, 114, 60, 126, 66, 138, 72, 150, 78, 162, 84, 174, 90, 186, 96, 198, 102, 210, 108, 222, 114, 234, 120, 246, 126, 258, 132, 270, 138, 282, 144, 294, 150, 306, 156, 318, 162, 330, 168, 342, 174, 354, 180, 366, 186, 378, 192, 390
OFFSET
0,2
COMMENTS
Also known as the kgd net.
This is one of the Laves tilings.
LINKS
Reticular Chemistry Structure Resource (RCSR), The kgd tiling (or net)
N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
FORMULA
a(0)=1; a(2*k)=6*k, a(2*k+1)=12*k+6.
G.f.: 1 + 6*x*(1+x+x^2)/(1-x^2)^2. - Robert Israel, Jan 21 2018
From Colin Barker, Jan 22 2018: (Start)
a(n) = 3*n for n>0 and even.
a(n) = 6*n for n odd.
a(n) = 2*a(n-2) - a(n-4) for n>4.
(End)
a(n) = 6*A026741(n), n>0. - R. J. Mathar, Jan 29 2018
MAPLE
f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 3*n else 6*n; fi; end;
[seq(f6(n), n=0..80)];
MATHEMATICA
Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {6, 6, 18, 12}, 80]] (* Jean-François Alcover, Mar 23 2020 *)
PROG
(PARI) Vec((1 + 6*x + 4*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jan 22 2018
CROSSREFS
Cf. A008579, A298027 (partial sums), A298028 (trivalent point).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Sequence in context: A151724 A335795 A315815 * A315816 A315817 A325696
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 21 2018
STATUS
approved