login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288073
a(n) is the number of rooted maps with n edges and 9 faces on an orientable surface of genus 1.
9
1385670, 126264820, 5593305476, 164767964504, 3682811916980, 67173739068760, 1046677747672360, 14373136466094880, 177882700353757460, 2017523504473479992, 21241931655650633720, 209732362862241103248, 1957830216739337392584, 17394726697224718134384, 147908195064869691109072
OFFSET
10,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 9, 1];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 18 2018 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288073_ser(N) = {
my(y = A000108_ser(N+1));
-2*y*(y-1)^10*(58911256*y^9 + 315266323*y^8 - 563073084*y^7 - 706445836*y^6 + 1588166368*y^5 - 488205920*y^4 - 472512192*y^3 + 315108288*y^2 - 44342784*y - 2179584)/(y-2)^29;
};
Vec(A288073_ser(17))
CROSSREFS
Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, this sequence, A288074 f=10.
Column 9 of A269921.
Sequence in context: A229420 A249882 A252446 * A237240 A052242 A234548
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 05 2017
STATUS
approved