login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287047
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 1.
9
60060, 3944928, 129726760, 2908358552, 50534154408, 729734918432, 9145847808784, 102432266545800, 1046677747672360, 9908748651241088, 87930943305742512, 738178726378902064, 5905479331377981200, 45289976937922983360, 334600965220354244896, 2391127223524518889064, 16585285393291515557928
OFFSET
8,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 1];
Table[a[n], {n, 8, 24}] (* Jean-François Alcover, Oct 18 2018 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287047_ser(N) = {
my(y = A000108_ser(N+1));
-4*y*(y-1)^8*(184142*y^7 + 1083793*y^6 - 1540136*y^5 - 1481152*y^4 + 2626176*y^3 - 737232*y^2 - 184896*y + 64320)/(y-2)^23;
};
Vec(A287047_ser(17))
CROSSREFS
Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, this sequence, A287048 f=8, A288073 f=9, A288074 f=10.
Column 7 of A269921, column 1 of A270411.
Cf. A000108.
Sequence in context: A106774 A189985 A338606 * A075671 A186556 A205983
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 04 2017
STATUS
approved