login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287046
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 1.
9
12012, 649950, 17970784, 344468530, 5188948072, 65723863196, 729734918432, 7302676928666, 67173739068760, 576218752277476, 4660202610532480, 35839052357422132, 263868150558327376, 1870153808268516280, 12816868756802256832, 85256107136168684650, 552171259884681058744
OFFSET
7,1
LINKS
Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, Journal of Combinatorial Theory, Series A, 133 (2015), 58-75.
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 1];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 17 2018 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287046_ser(N) = {
my(y = A000108_ser(N+1));
2*y*(y-1)^7*(28457*y^6 + 179171*y^5 - 222214*y^4 - 172512*y^3 + 257232*y^2 - 59904*y - 4224)/(y-2)^20;
};
Vec(A287046_ser(17))
CROSSREFS
Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, this sequence, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 6 of A269921, column 1 of A270410.
Cf. A000108.
Sequence in context: A236607 A156713 A183059 * A235308 A064966 A292815
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 04 2017
STATUS
approved