login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278572
Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n/2 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.
2
1, 1, 1, 2, 1, 3, 1, 3, -1, 1, 4, 3, 2, 3, 5, -1, 5, 1, 4, 7, -1, 3, 5, 6, 3, 7, 9, -1, 3, 5, 2, 7, 1, 5, 9, -1, 3, 7, -1, -1, 1, 3, 9, 13, 2, 1, 9, 3, 6, 7, 13, -1, 10, 13, 7, 2, 9, 11, 15, -1, -1, 4, 8, 14, -1
OFFSET
2,4
COMMENTS
This is the format used by John Brillhart (1968) and Zierler and Brillhart (1968).
REFERENCES
Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.
LINKS
Robert Israel, Table of n, a(n) for n = 2..4328 (rows 2 to 2170, flattened)
Joerg Arndt, Complete list of primitive trinomials over GF(2) up to degree 400. (Lists primitive trinomials only.)
Joerg Arndt, Complete list of primitive trinomials over GF(2) up to degree 400 [Cached copy, with permission]
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see Table 4.6.
Svein Mossige, Table of irreducible polynomials over GF[2] of degrees 10 through 20, Mathematics of Computation 26.120 (1972): 1007-1009.
N. Zierler and J. Brillhart, On primitive trinomials (mod 2), Information and Control 13 1968 541-554.
N. Zierler and J. Brillhart, On primitive trinomials (mod 2), II, Information and Control 14 1969 566-569.
EXAMPLE
Triangle begins:
1,
1,
1,
2,
1, 3,
1, 3,
-1,
1, 4,
3,
2,
3, 5,
-1,
5,
1, 4, 7,
-1,
3, 5, 6,
...
MAPLE
T:= proc(n) local L; L:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n/2]); if L = [] then -1 else op(L) fi
end proc:
map(T, [$2..100]); # Robert Israel, Mar 28 2017
MATHEMATICA
DeleteCases[#, 0] & /@ Table[Boole[IrreduciblePolynomialQ[x^n + x^# + 1, Modulus -> 2]] # & /@ Range[Floor[n/2]], {n, 2, 40}] /. {} -> {-1} // Flatten (* Michael De Vlieger, Mar 28 2017 *)
CROSSREFS
Rows n that contain particular numbers: 1 (A002475), 2 (A057460), 3 (A057461), 4 (A057463), 5 (A057474), 6 (A057476), 7 (A057477), 8 (A057478), 9 (A057479), 10 (A057480), 11 (A057481), 12 (A057482), 13 (A057483).
Sequence in context: A046924 A015710 A108415 * A136644 A111963 A206923
KEYWORD
sign,tabf,more
AUTHOR
N. J. A. Sloane, Nov 27 2016
STATUS
approved