OFFSET
2,2
COMMENTS
Brent, Hart, Kruppa, and Zimmermann found that a(57885161) = 0. - Charles R Greathouse IV, May 30 2013
LINKS
T. D. Noe, Table of n, a(n) for n = 2..500
Paul Zimmermann, There is no primitive trinomial of degree 57885161 over GF(2), posting to NMBRTHRY mailing list [alternate link]
EXAMPLE
a(7) = 4 because 1 + x + x^7 = 1 + x + x^7, 1 + x^2 + x^7 = (1 + x + x^2)*(1 + x + x^2 + x^4 + x^5), 1 + x^3 + x^7 = 1 + x^3 + x^7, 1 + x^4 + x^7 = 1 + x^4 + x^7, 1 + x^5 + x^7 = (1 + x + x^2)*(1 + x + x^3 + x^4 + x^5) and 1 + x^6 + x^7 = 1 + x^6 + x^7. Thus there are 4 trinomial expressions which cannot be factored over GF(2) and 2 trinomial expressions which do factor.
PROG
(PARI) a(n)=sum(s=1, n-1, polisirreducible((x^n+x^s+1)*Mod(1, 2))) \\ Charles R Greathouse IV, May 30 2013
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Robert G. Wilson v, Oct 11 2000
STATUS
approved