login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278570
a(n) = maximum absolute value of coefficients in the cyclotomic polynomial C(N,x), where N = n-th number which a product of three distinct odd primes = A046389(n).
2
2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2
OFFSET
1,1
REFERENCES
Don Reble, Posting to Sequence Fans Mailing List, Nov 26 2016
LINKS
MAPLE
with(numtheory):
b:= proc(n) option remember; local k;
for k from 2+`if`(n=1, 1, b(n-1)) by 2 while
bigomega(k)<>3 or nops(factorset(k))<>3 do od; k
end:
a:= n-> max(map(abs, [coeffs(cyclotomic(b(n), x))])):
seq(a(n), n=1..120); # Alois P. Heinz, Nov 27 2016
MATHEMATICA
b[n_] := b[n] = (For[k = 2 + If[n == 1, 1, b[n-1]], PrimeOmega[k] != 3 || PrimeNu[k] != 3, k += 2]; k);
a[n_] := Max @ Abs @ CoefficientList[Cyclotomic[b[n], x], x];
Array[a, 120] (* Jean-François Alcover, Mar 28 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A046389. See A278567 for a closely related sequence.
Sequence in context: A129139 A032539 A122922 * A046799 A348172 A319506
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2016
STATUS
approved