login
A015710
Least k >= 0 such that phi(n) * sigma(n) + k^2 is a perfect square, or -1 if impossible.
1
0, 1, 1, -1, 1, 1, 1, 2, -1, 3, 1, 3, 1, 0, 2, 29, 1, -1, 1, 5, 4, 1, 1, 2, 26, 5, 3, 2, 1, 0, 1, 4, 1, 6, 2, 8, 1, 3, 5, 2, 1, 2, 1, 1, 8, 4, 1, 15, -1, 16, 0, 7, 1, 7, 6, 6, 6, 9, 1, 4, 1, 6, 10, 119, 8, 6, 1, 8, 1, 5, 1, 9, 1, 11, 9, 1, 4, 8, 1, 17, -1, 1
OFFSET
1,8
LINKS
Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
MATHEMATICA
a[n_] := Module[{m = EulerPhi[n]*DivisorSigma[1, n]}, If[Mod[m, 4] == 2, -1, k = 0; While[!IntegerQ[Sqrt[m + k^2]], k++]; k]]; Array[a, 100] (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) a(n) = {my(x = sigma(n)*eulerphi(n)); if ((x % 4) == 2, -1, my(k=0); while (! issquare(x+k^2), k++); k; ); } \\ Michel Marcus, Dec 07 2018
CROSSREFS
Cf. A015713 (a(n) is zero), A062354 (phi(n)*sigma(n)).
Sequence in context: A377009 A287561 A046924 * A108415 A278572 A136644
KEYWORD
sign
EXTENSIONS
a(14), a(30), and a(51) corrected by Sean A. Irvine, Dec 06 2018
Entry revised by Amiram Eldar, Sean A. Irvine, and Michel Marcus, Dec 06 2018
STATUS
approved