login
A249554
Numbers m such that there are precisely 11 groups of order m.
21
140, 364, 380, 460, 476, 572, 748, 819, 860, 940, 988, 1036, 1148, 1180, 1196, 1276, 1292, 1340, 1484, 1564, 1580, 1612, 1628, 1660, 1708, 1804, 1953, 2044, 2060, 2108, 2140, 2204, 2236, 2332, 2444, 2492, 2540, 2668, 2684, 2716, 2780, 2812, 2828, 2924, 3052, 3068, 3116, 3196, 3212
OFFSET
1,1
MAPLE
with(GroupTheory): select(n->NumGroups(n)=11, [$1..4000]); # Muniru A Asiru, Mar 28 2018
MATHEMATICA
Select[Range[10^4], FiniteGroupCount[#] == 11 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*)(* Robert Price, May 24 2019 *)
PROG
(GAP) A249554 := Filtered([1..2015], n -> NumberSmallGroups(n) = 11); # Muniru A Asiru, Oct 16 2017
CROSSREFS
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), this sequence (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Sequence in context: A325022 A337689 A360217 * A196447 A255783 A255776
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 01 2014
EXTENSIONS
More terms added by Muniru A Asiru, Oct 23 2017
Incorrect b-file shortened by Andrew Howroyd, Jan 28 2022
STATUS
approved