OFFSET
1,1
LINKS
MAPLE
with(GroupTheory): select(n->NumGroups(n)=11, [$1..4000]); # Muniru A Asiru, Mar 28 2018
MATHEMATICA
Select[Range[10^4], FiniteGroupCount[#] == 11 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*)(* Robert Price, May 24 2019 *)
PROG
(GAP) A249554 := Filtered([1..2015], n -> NumberSmallGroups(n) = 11); # Muniru A Asiru, Oct 16 2017
CROSSREFS
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), this sequence (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 01 2014
EXTENSIONS
More terms added by Muniru A Asiru, Oct 23 2017
Incorrect b-file shortened by Andrew Howroyd, Jan 28 2022
STATUS
approved