OFFSET
1,1
COMMENTS
Let gnu(n) (= A000001(n)) denote the "group number of n" defined in A000001 or in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), then the sequence n -> gnu(a(n)) -> gnu(gnu(a(n))) consists of 1's. - Muniru A Asiru, Nov 19 2017
From Jianing Song, Dec 05 2021: (Start)
Contains all numbers of the form k = p*q^2, where p, q are odd primes such that q == -1 (mod p) (see A350245). The 3 groups are C_(p*q^2), C_q X C_(p*q) and (C_q X C_q) : C_p, where : means semidirect product. The third group, which is the only non-abelian group of order k, can be constructed as follows: in F_q the polynomial x^(p-1) + x^(p-2) + ... + x + 1 factors into quadratic polynomials. Pick one factor x^2 + a*x + b (all factors give the same group), then (C_q X C_q) : C_p has representation <x, y, t: x^q = y^q = t^p = 1, x*y = y*x, t*x*t^(-1) = y, t*y*t^(-1) = x^(-b)*y^(-a)>.
It seems that all terms are odd. (End)
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..234567, terms 1..206 from Muniru A Asiru.
H.-U. Besche, B. Eick and E. A. O'Brien, The Small Groups Library
H.-U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
J. H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, Math. Intell., Vol. 30, No. 2, Spring 2008.
Gordon Royle, Numbers of Small Groups
EXAMPLE
For m = 75, the 3 groups of order 75 are C75, (C5 x C5) : C3, C15 x C5 and for m = 363 the 3 groups of order 363 are C363, (C11 x C11) : C3, C33 x C11 where C is the Cyclic group of the stated order. The symbols x and : mean direct and semi-direct products respectively. - Muniru A Asiru, Oct 24 2017
PROG
(PARI)
is(n) = {
my(p = gcd(n, eulerphi(n)), f, g);
if (isprime(p), return(n % p^2 == 0 && isprime(gcd(p+1, n))));
if (omega(p) != 2 || !issquarefree(n), return(0));
f = factor(n); g = factor(p);
1 == g[2, 1] % g[1, 1] &&
1 == sum(k=1, matsize(f)[1], f[k, 1] % g[1, 1] == 1) &&
1 == sum(k=1, matsize(f)[1], f[k, 1] % g[2, 1] == 1);
};
seq(N) = {
my(a = vector(N), k=0, n=1);
while(k < N, if(is(n), a[k++]=n); n++); a;
};
seq(43) \\ Gheorghe Coserea, Dec 12 2017
CROSSREFS
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), this sequence (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
A350245 is a subsequence.
KEYWORD
nonn
AUTHOR
Christian G. Bower, May 25 2000; Nov 12 2003; Feb 17 2006
STATUS
approved