OFFSET
1,1
LINKS
H. U. Besche, B. Eick and E. A. O'Brien. A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
Gordon Royle, Numbers of Small Groups
FORMULA
Sequence is { m | A000001(m) = 17 }.
EXAMPLE
For m = 675, the 17 groups are C675, C225 x C3, C25 x ((C3 x C3) : C3), C25 x (C9 : C3), (C5 x C5) : C27, C135 x C5, C75 x C3 x C3, C9 x ((C5 x C5) : C3), (C45 x C5) : C3, C3 x ((C5 x C5) : C9), ((C5 x C5) : C9) : C3, (C15 x C15) : C3, C45 x C15, C5 x C5 x ((C3 x C3) : C3), C5 x C5 x (C9 : C3), C3 x C3 x ((C5 x C5) : C3), C15 x C15 x C3 where C means Cyclic group and the symbols x and : mean direct and semidirect products respectively.
MAPLE
with(GroupTheory): select(n->NumGroups(n)=17, [$1..150001]); # Muniru A Asiru, Mar 27 2018
CROSSREFS
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), this sequence (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Nov 11 2017
EXTENSIONS
More terms from Muniru A Asiru, Nov 17 2017
Incorrect terms removed by Andrew Howroyd, Jan 28 2022
STATUS
approved