login
A237871
Number of partitions of n such that (greatest part) + (least part) > number of parts.
5
1, 2, 2, 4, 5, 8, 10, 16, 20, 28, 37, 51, 65, 88, 112, 147, 187, 243, 305, 391, 488, 618, 769, 963, 1189, 1479, 1817, 2241, 2739, 3357, 4081, 4976, 6021, 7296, 8794, 10605, 12728, 15284, 18272, 21845, 26024, 30996, 36797, 43671, 51676, 61118, 72106, 85013
OFFSET
1,2
EXAMPLE
a(6) = 8 counts these partitions: 6, 51, 42, 411, 33, 321, 222, 3111..
MATHEMATICA
z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];
Table[Count[q[n], p_ /; Max[p] + Min[p] < t[p]], {n, z}] (* A237822 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] <= t[p]], {n, z}] (* A237823 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] == t[p]], {n, z}] (* A237869 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] > t[p]], {n, z}] (* A237870 *)
Table[Count[q[n], p_ /; Max[p] + Min[p] >= t[p]], {n, z}] (* A237871 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
STATUS
approved