login
A240486
Number of partitions of n containing m(1) as a part, where m denotes multiplicity.
6
0, 1, 0, 1, 2, 2, 4, 5, 8, 10, 16, 19, 29, 36, 51, 63, 89, 108, 148, 182, 242, 297, 390, 475, 615, 750, 955, 1161, 1466, 1774, 2217, 2679, 3316, 3994, 4911, 5892, 7197, 8613, 10451, 12470, 15055, 17905, 21508, 25513, 30503, 36081, 42966, 50678, 60117, 70732
OFFSET
0,5
EXAMPLE
a(6) counts these 5 partitions: 51, 421, 331, 3211, 2221.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 1]]], {n, 0, z}] (* A240486 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 2]]], {n, 0, z}] (* A240487 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 3]]], {n, 0, z}] (* A240488 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 4]]], {n, 0, z}] (* A240489 *)
Table[Count[f[n], p_ /; MemberQ[p, Count[p, 5]]], {n, 0, z}] (* A240490 *)
CROSSREFS
Sequence in context: A326631 A260894 A193146 * A237871 A027193 A126796
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 06 2014
STATUS
approved