login
A325831
Number of integer partitions of n whose number of submultisets is greater than n.
10
1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 21, 35, 40, 58, 84, 120, 141, 199, 255, 347, 447, 592, 772, 1006, 1172, 1504, 1928, 2455, 3061, 3859, 4778, 5953, 7054, 8737, 10742, 13193, 15783, 19241, 23412, 28344, 33951, 40911, 49150, 58917, 70482, 84055, 100069, 118914
OFFSET
0,4
COMMENTS
The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325795.
LINKS
FORMULA
a(n) = A000041(n) - A325834(n).
For n even, a(n) = A325832(n) - A325830(n/2); for n odd, a(n) = A325832(n).
EXAMPLE
The a(1) = 1 through a(8) = 10 partitions:
(1) (11) (21) (211) (221) (321) (421) (3221)
(111) (1111) (311) (2211) (2221) (3311)
(2111) (3111) (3211) (4211)
(11111) (21111) (4111) (22211)
(111111) (22111) (32111)
(31111) (41111)
(211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
`if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
(w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
end:
a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n):
seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])>n&]], {n, 0, 30}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1,
If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0,
Function[w, b[w, Min[w, i-1], p/(j+1)]][n-i*j], 0], {j, 0, n/i}]];
a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n}];
a /@ Range[0, 55] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 25 2019
STATUS
approved