login
A218751
a(n) = (48^n - 1)/47.
3
0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
OFFSET
0,3
COMMENTS
Partial sums of powers of 48 (A009992).
FORMULA
a(n) = floor(48^n/47).
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-48*x)).
a(n) = 49*a(n-1) - 48*a(n-2) with a(0)=0, a(1)=1.
a(n) = 48*a(n-1) + 1 with a(0)=0. (End)
E.g.f.: exp(x)*(exp(47*x) - 1)/47. - Elmo R. Oliveira, Aug 29 2024
MATHEMATICA
LinearRecurrence[{49, -48}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
PROG
(PARI) A218751(n)=48^n\47
(Maxima) A218751(n):=floor((48^n-1)/47)$ makelist(A218751(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [n le 2 select n-1 else 49*Self(n-1)-48*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved