login
A218748
a(n) = (45^n - 1)/44.
3
0, 1, 46, 2071, 93196, 4193821, 188721946, 8492487571, 382161940696, 17197287331321, 773877929909446, 34824506845925071, 1567102808066628196, 70519626362998268821, 3173383186334922096946, 142802243385071494362571, 6426100952328217246315696
OFFSET
0,3
COMMENTS
Partial sums of powers of 45 (A009989).
FORMULA
G.f.: x/((1-x)*(1-45*x)). - Vincenzo Librandi, Nov 08 2012
a(n) = 46*a(n-1) - 45*a(n-2) with a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 08 2012
a(n) = 45*a(n-1) + 1 with a(0)=0. - Vincenzo Librandi, Nov 08 2012
a(n) = floor(45^n/44). - Vincenzo Librandi, Nov 08 2012
E.g.f.: exp(23*x)*sinh(22*x)/22. - Elmo R. Oliveira, Aug 27 2024
MATHEMATICA
LinearRecurrence[{46, -45}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
PROG
(PARI) A218748(n)=45^n\44
(Maxima) A218748(n):=(45^n-1)/44$ makelist(A218748(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
(Magma) [n le 2 select n-1 else 46*Self(n-1) - 45*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved