login
A133853
a(n) = (64^n - 1)/63.
36
0, 1, 65, 4161, 266305, 17043521, 1090785345, 69810262081, 4467856773185, 285942833483841, 18300341342965825, 1171221845949812801, 74958198140788019265, 4797324681010433232961, 307028779584667726909505, 19649841893418734522208321, 1257589881178799009421332545
OFFSET
0,3
COMMENTS
Partial sums of powers of 64 (A089357), a.k.a. q-numbers for q=64.
FORMULA
From Wolfdieter Lang, Apr 08 2022: (Start)
a(n) = Sum_{j=0..n-1} 2^(6*j). See the comment.
G.f.: x/((1 - 64*x)*(1 - x)).
E.g.f.: exp(x)*(exp(63*x) - 1)/63. (End)
MATHEMATICA
LinearRecurrence[{65, -64}, {0, 1}, 20] (* Harvey P. Dale, Aug 20 2017 *)
PROG
(Magma) [(64^n-1)/63: n in [0..20]]; // Vincenzo Librandi, Aug 10 2011
(PARI) A133853(n)=64^n\63
(Maxima) makelist((64^n-1)/63, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
CROSSREFS
Cf. A000364.
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.
Sequence in context: A069225 A211960 A293695 * A188693 A206876 A188506
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 07 2008
EXTENSIONS
a(6)-a(15) from Vincenzo Librandi, Aug 10 2011
STATUS
approved