login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214437
Least numbers whose groups of 2,3,...,n digits taken from the left are divisible by 2,3,...,n.
4
1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800
OFFSET
1,2
COMMENTS
The first 11 terms of the sequence are coincident with A078282.
a(6) is formed with 66,7 % zeros; A(5) with 60 %; a(7) with 57,1 %; a(4), a(8), a(10) and a(20) with 50 %.
a(n) is the first term of A144688 with n digits, except that A144688 includes zero as first term. - Franklin T. Adams-Watters, Jul 18 2012
There are 25 terms in the sequence; the 25-digit number 3608528850368400786036725 is the last number to satisfy the requirements. - Shyam Sunder Gupta, Aug 04 2013
LINKS
Shyam Sunder Gupta, Table of n, a(n) for n = 1..25
EXAMPLE
a(6) = 102000 because 10, 102, 1020, 10200 and 102000 are divisible by 2, 3, 4, 5 and 6.
There are nine one-digit numbers that are divisible by 1; the smallest is 1, so a(1)=1.
For two-digit numbers, the second digit must be even, i.e., 0,2,4,6,8 to make it divisible by 2, which gives 10 as the smallest number to satisfy the requirement, so a(2)=10. - Shyam Sunder Gupta, Aug 04 2013
MATHEMATICA
a=Table[j, {j, 9}]; r=2; t={};
While[!a == {}, n=Length[a]; nmin=Last[a]; k=1; b={};
While[!k>n, z0=a[[k]]; Do[z=10*z0+j; If[Mod[z, r]==0, b=Append[b, z]], {j, 0, 9}]; k++]; AppendTo[t, nmin]; a=b; r++]; t (* Shyam Sunder Gupta, Aug 04 2013 *)
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Robin Garcia, Jul 17 2012
STATUS
approved