login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214438
Numerator of correlation kernels arising in adding a list of numbers in base 3 considering the distribution of number of carries.
3
1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1, -1, 0, 1, 1, 2, 1, 1, 0, -1, -1, -2, -1
OFFSET
-1,3
COMMENTS
From example 4, p. 645 of Borodin.
Periodic with period 12. - Ray Chandler, Sep 03 2015
LINKS
Alexei Borodin, Persi Diaconis, and Jason Fulman, On adding a list of numbers (and other one-dependent determinantal processes), Bull. AMS, Volume 47, Number 4, October 2010, Pages 639-670.
FORMULA
numerators of: k(n) = 0 for n < -1; k(-1) = 1/3; k(n) = 0 for n = 4 + 6j, j >= 0; for others n >= 2, k(n) = (-1)^floor((n+1)/6) * (1/3)^ floor ((n+3)/4)* 2^delta(n) where delta(n) = 1 if n = 1 mod 6 and 0 else.
MAPLE
A214438 := proc(n)
(1+t+2*t^2/3+t^3/3+t^4/9)/3/(1+t^6/27) ;
coeftayl(%, t=0, n+1) ;
numer(%) ;
end proc:
seq(A214438(n), n=-1..80) ; # R. J. Mathar, Jul 21 2012
MATHEMATICA
LinearRecurrence[{0, 1, 0, -1}, {1, 1, 2, 1}, 82] (* Ray Chandler, Sep 03 2015 *)
CROSSREFS
Cf. A214439 (denominators).
Sequence in context: A278347 A120936 A335294 * A173432 A101675 A348916
KEYWORD
sign,frac
AUTHOR
Jonathan Vos Post, Jul 17 2012
STATUS
approved