login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214435
Triangle read by rows: T(n,k) = n!*S(n,k), where S(n,k) is the matrix inverse of the triangle zeta(k-n,1) - zeta(k-n,k+1), n>=1, k>=1.
0
1, -1, 1, 1, -3, 2, 3, 3, -12, 6, -2, 30, 8, -60, 24, -240, 240, 240, 0, -360, 120, -3900, -540, 4800, 1800, -360, -2520, 720, -15120, -112560, 65520, 70560, 12600, -5880, -20160, 5040, 2169888, -4284000, -756672, 2076480, 945504, 70560, -80640, -181440, 40320
OFFSET
1,5
REFERENCES
J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.
EXAMPLE
1,
-1, 1,
1, -3, 2,
3, 3, -12, 6,
-2, 30, 8, -60, 24,
-240, 240, 240, 0, -360, 120,
-3900, -540, 4800, 1800, -360, -2520, 720.
MAPLE
with(linalg): S := proc(n) f := (n, k) -> `if`(k>n, 0, Zeta(0, k-n, 1)-Zeta(0, k-n, k+1)); inverse(matrix(n, n, f)) end: A214435_row := n -> n!*convert(row(S(n), n), list); for n from 1 to 9 do A214435_row(n) od;
MATHEMATICA
max = 9; s = Table[ If[ k > n, 0, Zeta[k - n, 1] - Zeta[k - n, k + 1]], {n, 1, max}, {k, 1, max}] // Inverse; t[n_, k_] := n!*s[[n, k]]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
CROSSREFS
Cf. A103438.
Sequence in context: A323467 A341097 A239959 * A215926 A007888 A188723
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 17 2012
STATUS
approved