login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214434
Composite numbers k such that k divides Fibonacci(k+1) or Fibonacci(k-1) and 2^(k-1) == 1 (mod k).
1
6601, 13981, 30889, 68101, 219781, 252601, 332949, 399001, 512461, 642001, 721801, 722261, 741751, 852841, 873181, 1024651, 1141141, 1193221, 1207361, 1533601, 1690501, 1735841, 1857241, 1909001, 2085301, 2100901, 2165801, 2603381, 2704801, 2757241, 3186821, 3568661
OFFSET
1,1
COMMENTS
Pseudoprimes to a criterion for primality which tests that
1. k divides Fibonacci(k+1) or Fibonacci(k-1) (see A182554, A081264), and
2. 2^(k-1) == 1 (mod k) (see A001567).
All terms appear to be congruent to 1 or -1 (mod 5).
Terms that are not congruent to 1 or -1 (mod 5): 22711873, 40160737, 55462177, ... . - Amiram Eldar, Sep 12 2022
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..671 from Giovanni Resta)
FORMULA
Intersection of A182554 and A001567.
EXAMPLE
6601 is in the sequence because the 6600th Fibonacci number is divisible by 6601 and 2^6600 = 1 mod 6601.
MAPLE
with(combinat):f:= n-> fibonacci(n): for n from 1 to 2000000 do if(f(n+1) mod n = 0 or f(n-1) mod n = 0) and 2^(n-1) mod n = 1 and not isprime(n) then print(n) fi od;
MATHEMATICA
Select[Range[1, 4*10^6, 2], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 && (Divisible[Fibonacci[# - 1], #] || Divisible[Fibonacci[# + 1], #]) &] (* Amiram Eldar, Sep 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary Detlefs, Jul 17 2012
STATUS
approved