login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190315
Central coefficients of the Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)) (A190215).
2
1, 2, 9, 48, 265, 1500, 8638, 50360, 296325, 1756160, 10467556, 62683896, 376838098, 2272896626, 13747543035, 83354081728, 506467851061, 3083121435312, 18799746616104, 114804614071760, 702016963933404, 4297947201746176, 26342178216979384
OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = T(2*n,n), where T(n,k)=A190215(n,k).
a(n) = Sum_{i=0..n} binomial(n+i,n)*Sum_{j=0..n-i} binomial(i+j-1,j)*binomial(j,n-i-j).
MATHEMATICA
Table[Sum[Binomial[n+i, n]Sum[Binomial[i+j-1, j]Binomial[j, n-i-j], {j, 0, n-i}], {i, 0, n}], {n, 0, 22}]
PROG
(Maxima) makelist(sum(binomial(n+i, n)*sum(binomial(i+j-1, j)*binomial(j, n-i-j), j, 0, n-i), i, 0, n), n, 0, 22);
(PARI) for(n=0, 30, print1(sum(k=0, n, binomial(n+k, n)*sum(j=0, n-k, binomial(k+j-1, j)*binomial(j, n-k-j))), ", ")) \\ G. C. Greubel, Mar 04 2018
CROSSREFS
Cf. A190215.
Sequence in context: A306356 A188818 A047139 * A190253 A174687 A047059
KEYWORD
nonn
AUTHOR
Emanuele Munarini, May 10 2011
STATUS
approved