login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190312
Number of scalene triangles on an n X n grid (or geoboard).
1
0, 0, 40, 368, 1704, 5704, 15400, 36096, 75632, 145968, 263592, 451392, 738360, 1163552, 1774840, 2632344, 3808992, 5394752, 7493936, 10233832, 13759008, 18241312, 23877984, 30896984, 39551456, 50137240, 62983128, 78459880
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Geoboard.
Eric Weisstein's World of Mathematics, Scalene Triangle.
FORMULA
a(n) = A045996(n) - A186434(n).
MATHEMATICA
q[n_] :=
Module[{sqDist, t0, t1, t2},
(* Squared distances *)
sqDist = {p_, q_} :> (Floor[p/n] - Floor[q/n])^2 + (Mod[p, n] - Mod[q, n])^2;
(* Triads of points *)
t0 = Subsets[Range[0, n^2 - 1], {3, 3}];
(* Exclude collinear vertices *)
t1 = Select[t0, Det[Map[{Floor[#/n], Mod[#, n], 1} &, {#[[1]], #[[2]], #[[
3]]}]] != 0 &];
(* Calculate sides *)
t2 = Map[{#,
Sort[{{#[[2]], #[[3]]}, {#[[3]], #[[1]]}, {#[[1]], #[[2]]}} /. sqDist]}&, t1];
(* Select scalenes *)
t2 = Select[t2,
#[[2, 1]] != #[[2, 2]] && #[[2, 2]] != #[[2, 3]] && #[[2, 3]] != #[[2, 1]] &];
Return[Length[t2]];
];
Map[q[#] &, Range[9]] (* César Eliud Lozada, Mar 26 2021 *)
CROSSREFS
Sequence in context: A251431 A285919 A234913 * A229532 A252180 A008355
KEYWORD
nonn
AUTHOR
Martin Renner, May 08 2011
STATUS
approved