login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190215
Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)).
3
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 12, 14, 9, 4, 1, 29, 38, 28, 14, 5, 1, 70, 102, 84, 48, 20, 6, 1, 169, 271, 246, 157, 75, 27, 7, 1, 408, 714, 707, 496, 265, 110, 35, 8, 1, 985, 1868, 2001, 1526, 896, 417, 154, 44, 9, 1, 2378, 4858, 5592, 4596, 2930, 1500, 623, 208, 54, 10, 1, 5741, 12569, 15461, 13602, 9330, 5186, 2373, 894, 273, 65, 11, 1
OFFSET
0,4
COMMENTS
Row sums = A052963.
Diagonal sums = A052960.
Central coefficients = A190315.
FORMULA
T(n,k) = Sum_{i=0..n-k} (binomial(i+k,k)*Sum_{j=0..n-k-i} (binomial(i+j-1,j)*binomial(j,n-k-i-j) )).
Recurrence: T(n+3,k+1) = 2 T(n+2,k+1) + T(n+2,k) + T(n+1,k+1) - T(n+1,k) - T(n,k).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
12, 14, 9, 4, 1;
29, 38, 28, 14, 5, 1;
70, 102, 84, 48, 20, 6, 1;
169, 271, 246, 157, 75, 27, 7, 1;
408, 714, 707, 496, 265, 110, 35, 8, 1;
MATHEMATICA
Flatten[Table[Sum[Binomial[i+k, k]Sum[Binomial[i+j-1, j]Binomial[j, n-k-i-j], {j, 0, n-k-i}], {i, 0, n-k}], {n, 0, 12}, {k, 0, n}]]
PROG
(Maxima) create_list(sum(binomial(i+k, k)*sum(binomial(i+j-1, j)*binomial(j, n-k-i-j), j, 0, n-k-i), i, 0, n-k), n, 0, 12, k, 0, n);
(PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n-k, binomial(j+k, k)* sum(r=0, n-k-j, binomial(j+r-1, r)*binomial(r, n-k-j-r))), ", "))) \\ G. C. Greubel, Dec 27 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emanuele Munarini, May 10 2011
STATUS
approved