Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 05 2018 04:10:28
%S 1,2,9,48,265,1500,8638,50360,296325,1756160,10467556,62683896,
%T 376838098,2272896626,13747543035,83354081728,506467851061,
%U 3083121435312,18799746616104,114804614071760,702016963933404,4297947201746176,26342178216979384
%N Central coefficients of the Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)) (A190215).
%H G. C. Greubel, <a href="/A190315/b190315.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..100 from Vincenzo Librandi)
%F a(n) = T(2*n,n), where T(n,k)=A190215(n,k).
%F a(n) = Sum_{i=0..n} binomial(n+i,n)*Sum_{j=0..n-i} binomial(i+j-1,j)*binomial(j,n-i-j).
%t Table[Sum[Binomial[n+i,n]Sum[Binomial[i+j-1,j]Binomial[j,n-i-j],{j,0,n-i}],{i,0,n}],{n,0,22}]
%o (Maxima) makelist(sum(binomial(n+i,n)*sum(binomial(i+j-1,j)*binomial(j,n-i-j),j,0,n-i),i,0,n),n,0,22);
%o (PARI) for(n=0,30, print1(sum(k=0,n, binomial(n+k,n)*sum(j=0,n-k, binomial(k+j-1,j)*binomial(j,n-k-j))), ", ")) \\ _G. C. Greubel_, Mar 04 2018
%Y Cf. A190215.
%K nonn
%O 0,2
%A _Emanuele Munarini_, May 10 2011