login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180678
The Ze2 sums of the Pell-Jacobsthal triangle A013609.
2
1, 2, 5, 16, 57, 206, 737, 2612, 9213, 32442, 114205, 402072, 1415713, 4985126, 17554489, 61816252, 217679141, 766531986, 2699251381, 9505089568, 33471028105, 117864194430, 415044573969, 1461529529924, 5146600421325
OFFSET
0,2
COMMENTS
The a(n) represent the Ze2 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these zebra and other chess sums.
FORMULA
a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=2 and a(2)= 5.
a(n) = Sum_{k=0..floor(n/2)} A013609(n+k,n-2*k).
G.f.: (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3).
MAPLE
nmax:=24: a(0):=1: a(1):=2: a(2):=5: for n from 3 to nmax do a(n) := 6*a(n-1)-11*a(n-2)+8*a(n-3) od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{6, -11, 8}, {1, 2, 5}, 30] (* or *) CoefficientList[ Series[(1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3), {x, 0, 30}], x] (* G. C. Greubel, Jun 06 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)) \\ G. C. Greubel, Jun 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3) )); // G. C. Greubel, Jun 06 2019
(Sage) ((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
(GAP) a:=[1, 2, 5];; for n in [4..30] do a[n]:=6*a[n-1]-11*a[n-2]+8*a[n-3]; od; a; # G. C. Greubel, Jun 06 2019
CROSSREFS
Cf. A140413 (Ze1), A180678 (Ze2), A097117 (Ze3), A055588 (Ze4).
Sequence in context: A350906 A082789 A234278 * A072110 A323229 A197158
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved