login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180681
T(n,k) is the sum of the hook lengths over the partitions of n with exactly k parts.
7
1, 3, 3, 6, 5, 6, 10, 16, 8, 10, 15, 23, 22, 12, 15, 21, 47, 44, 30, 17, 21, 28, 62, 74, 56, 40, 23, 28, 36, 104, 115, 114, 71, 52, 30, 36, 45, 130, 196, 162, 139, 89, 66, 38, 45, 55, 195, 268, 286, 227, 169, 110, 82, 47, 55, 66, 235, 395, 407, 369, 269, 204, 134, 100, 57, 66
OFFSET
1,2
COMMENTS
Row sums equal A066183 ('Total sum of squares of parts in all partitions of n').
From Omar E. Pol, Mar 20 2018: (Start)
Both column 1 and leading diagonal give A000217, n >= 1.
Both A206561 and A299768 have the same row sums as this triangle.
Apparently the second diagonal gives A133263 without the first term. (End)
LINKS
EXAMPLE
T(5,3) = 22 since the partitions of 5 in 3 parts are 221 and 311, with hook lengths {{2,4}, {1,3}, {1}} and {{1,2,5}, {2}, {1}} summing to 22.
Triangle T(n,k) begins:
1;
3, 3;
6, 5, 6;
10, 16, 8, 10;
15, 23, 22, 12, 15;
21, 47, 44, 30, 17, 21;
28, 62, 74, 56, 40, 23, 28;
36, 104, 115, 114, 71, 52, 30, 36;
45, 130, 196, 162, 139, 89, 66, 38, 45;
55, 195, 268, 286, 227, 169, 110, 82, 47, 55;
MAPLE
f:= n-> (n-1)*n/2:
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
end:
T:= (n, k)-> (p-> p[1]*(n+f(k))+p[2])(b(n-k, min(n-k, k))):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Mar 20 2018
MATHEMATICA
(*Needs["DiscreteMath`Combinatorica`"]; hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[ #1], Max[p]] & ) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] & ) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] & ) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, {2}] - 1]; partitionexact[n_, m_] := TransposePartition /@ (Prepend[ #1, m] & ) /@ Partitions[n - m, m] *); Table[Tr[ Tr[ Flatten[hooklength[ # ]]] &/@ partitionexact[n, k] ] , {n, 16}, {k, n}]
(* Second program: *)
Table[p = IntegerPartitions[n, {k}]; Total@Table[y = Table[Boole[p[[l]][[i]] >= j], {i, k}, {j, n}]; Total[Table[Total[{y[[i, j ;; n]], y[[i + 1 ;; k, j]]}, 2], {i, k}, {j, n}], 2], {l, Length[p]}], {n, 11}, {k, n}] // Flatten (* Robert Price, Jun 19 2020 *)
f[n_] := n(n-1)/2;
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
T[n_, k_] := Function[p, p[[1]] (n + f[k]) + p[[2]]][b[n-k, Min[n-k, k]]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
CROSSREFS
T(2n-1,n) gives A301499.
Sequence in context: A377481 A142149 A132119 * A286102 A023822 A318514
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Sep 16 2010
STATUS
approved