login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323229
a(n) = binomial(2*n, n+1) + 1.
4
1, 2, 5, 16, 57, 211, 793, 3004, 11441, 43759, 167961, 646647, 2496145, 9657701, 37442161, 145422676, 565722721, 2203961431, 8597496601, 33578000611, 131282408401, 513791607421, 2012616400081, 7890371113951, 30957699535777, 121548660036301, 477551179875953
OFFSET
0,2
LINKS
FORMULA
Let G(x) = (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 6*x^3 - 4*x + 1 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (4*x^4 - 14*x^3 + 17*x^2 - 8*x + 1)*G(x).
a(n) = A212382(2*n, n). - Alois P. Heinz, May 03 2019
MAPLE
aList := proc(len) local gf, ser; assume(Im(x) > 0);
gf := (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1));
ser := series(gf, x, len+2):
seq(coeff(ser, x, n), n=0..len) end: aList(27);
MATHEMATICA
Table[Binomial[2n, n+1] + 1, {n, 0, 26}]
PROG
(Magma) [Binomial(2*n, n+1) + 1: n in [0..30]]; // G. C. Greubel, Dec 26 2021
(Sage) [binomial(2*n, n+1) + 1 for n in (0..30)] # G. C. Greubel, Dec 26 2021
CROSSREFS
Cf. A323230 (d=0), A260878 (d=1), this sequence (d=2).
Cf. A212382.
Sequence in context: A234278 A180678 A072110 * A197158 A188314 A114296
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Feb 12 2019
STATUS
approved