login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175795
Numbers n such that the digits of sigma(n) are exactly the same (albeit in different order) as the digits of phi(n), in base 10.
5
1, 65, 207, 1769, 2066, 2771, 3197, 4330, 4587, 4769, 4946, 5067, 6443, 6623, 6989, 7133, 8201, 9263, 11951, 12331, 13243, 16403, 17429, 17441, 21416, 22083, 23161, 24746, 27058, 27945, 28049, 28185, 28451, 29111, 30551, 31439, 32554, 32566, 32849, 33715
OFFSET
1,2
LINKS
EXAMPLE
2771 is in the sequence because sigma(2771) = 2952, phi(2771) = 2592
MATHEMATICA
okQ[n_] := Module[{idn = IntegerDigits[DivisorSigma[1, n]]}, Sort[idn] == Sort[IntegerDigits[EulerPhi[n]]]]; Select[Range[40000], okQ]
PROG
(Python)
from sympy import totient, divisor_sigma
A175795_list = [n for n in range(1, 10**4) if sorted(str(divisor_sigma(n))) == sorted(str(totient(n)))] # Chai Wah Wu, Dec 13 2015
(PARI) isok(n) = (de = digits(eulerphi(n))) && (ds = digits(sigma(n))) && (vecsort(de) == vecsort(ds)); \\ Michel Marcus, Dec 13 2015
CROSSREFS
Cf. A000010 (Euler totient function), A000203 (sigma function), A115920, A115921, A114065.
Sequence in context: A051968 A242318 A200867 * A056777 A048512 A237039
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Sep 06 2010
STATUS
approved