login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242318
Number of length n+3+2 0..3 arrays with every value 0..3 appearing at least once in every consecutive 3+3 elements, and new values 0..3 introduced in order.
1
65, 185, 503, 1316, 3398, 8801, 23069, 60197, 156887, 408962, 1066514, 2781611, 7253453, 18914369, 49323167, 128621684, 335409314, 874649537, 2280834353, 5947765493, 15510073823, 40445831522, 105471145814, 275038567523
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-2) + 3*a(n-3) + 5*a(n-4) + 6*a(n-5) - a(n-6) - a(n-7) - a(n-9) - a(n-10).
Empirical g.f.: x*(65 + 120*x + 188*x^2 + 248*x^3 + 196*x^4 - 53*x^5 - 36*x^6 - 16*x^7 - 49*x^8 - 35*x^9) / (1 - x - 2*x^2 - 3*x^3 - 5*x^4 - 6*x^5 + x^6 + x^7 + x^9 + x^10). - Colin Barker, Nov 01 2018
EXAMPLE
Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....0....1....0....1....1....0....1....1....1....1....1....1
..0....1....0....2....1....1....1....2....1....1....2....2....2....1....2....2
..1....2....1....0....2....2....2....3....2....2....3....0....0....2....3....3
..2....3....2....3....0....3....3....1....3....3....2....3....1....1....0....1
..3....0....3....3....3....0....2....2....0....1....0....2....3....3....1....1
..1....1....0....1....2....1....0....0....1....0....3....2....2....0....3....0
..3....1....2....2....1....2....3....2....0....2....1....1....0....1....1....2
..0....2....1....0....3....1....1....3....2....3....0....2....2....2....2....0
..3....0....1....0....2....3....1....0....2....0....0....0....3....3....3....3
CROSSREFS
Column 3 of A242322.
Sequence in context: A255244 A261989 A051968 * A200867 A175795 A056777
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 10 2014
STATUS
approved