OFFSET
1,1
COMMENTS
It is easy to show that if p, p+2, p+6 and p+8 are all prime (a prime quadruple as defined in A007530, which lists the values of p) with x=p(p+8), x+12=(p+2)(p+6), then x is in the sequence. I conjecture that all members of the sequence are of this form. - Jud McCranie, Oct 11 2000
Numbers so far are all congruent to 65 (mod 72). - Ralf Stephan, Jul 07 2003
EXAMPLE
k = 209 = 11*19, k + 12 = 221 = 13*17, phi(k + 12) = 192 = 180 + 12 = phi(k) + 12, also sigma(221) = 252 = sigma(209) + 12 = 240 + 12.
phi(65) + 12 = 60 = phi(65 + 12), sigma(65) + 12 = 96 = sigma(65 + 12), 65 is composite.
PROG
(PARI) isok(n) = !isprime(n) && (sigma(n+12) == sigma(n)+12) && (eulerphi(n+12)==eulerphi(n)+12); \\ Michel Marcus, Jul 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 17 2000
EXTENSIONS
More terms from Jud McCranie, Oct 11 2000
STATUS
approved