login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172971
Triangle T(n, k) = c(n) - c(k) - c(n-k), where c(n) = Product_{j=0..n} Partitions(j), read by rows.
2
-1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 2, 1, -1, -1, 7, 9, 9, 7, -1, -1, 35, 43, 44, 43, 35, -1, -1, 191, 227, 234, 234, 227, 191, -1, -1, 1199, 1391, 1426, 1432, 1426, 1391, 1199, -1, -1, 10079, 11279, 11470, 11504, 11504, 11470, 11279, 10079, -1
OFFSET
0,13
FORMULA
T(n, k) = c(n) - c(k) - c(n-k), where c(n) = Product_{j=0..n} Partitions(j).
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
-1;
-1, -1;
-1, -1, -1;
-1, 0, 0, -1;
-1, 1, 2, 1, -1;
-1, 7, 9, 9, 7, -1;
-1, 35, 43, 44, 43, 35, -1;
-1, 191, 227, 234, 234, 227, 191, -1;
-1, 1199, 1391, 1426, 1432, 1426, 1391, 1199, -1;
-1, 10079, 11279, 11470, 11504, 11504, 11470, 11279, 10079, -1;
MATHEMATICA
c[n_]:= Product[PartitionsQ[j], {j, n}];
T[n_, k_]:= c[n] - (c[k] + c[n-k]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma)
A000009:= Coefficients(&*[1+x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Sergei Haller's code
c:= func< n | (&*[A000009[j+1]: j in [0..n]]) >;
A172971:= func< n, k | c(n) - c(k) - c(n-k) >;
[A172971(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 04 2022
(SageMath)
def EulerTransform(a):
@cached_function
def b(n):
if n == 0: return 1
s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n))
return s//n
return b
a = BinaryRecurrenceSequence(0, 1)
b = EulerTransform(a) # Peter Luschny's code for A000009
@CachedFunction
def c(n): return product(b(j) for j in range(n+1))
def A172971(n, k): return c(n) - c(k) - c(n-k)
flatten([[A172971(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Dec 04 2022
CROSSREFS
Cf. A000009.
Sequence in context: A101124 A011127 A172970 * A306702 A240581 A329043
KEYWORD
sign,tabl,less
AUTHOR
Roger L. Bagula, Feb 06 2010
EXTENSIONS
Edited by G. C. Greubel, Dec 04 2022
STATUS
approved