login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172970
Triangle T(n, k) = A172452(n) - A172452(k) - A172452(n-k), read by rows.
1
-1, -1, -1, -1, -1, -1, -1, 0, 0, -1, -1, 1, 2, 1, -1, -1, 7, 9, 9, 7, -1, -1, 35, 43, 44, 43, 35, -1, -1, 143, 179, 186, 186, 179, 143, -1, -1, 575, 719, 754, 760, 754, 719, 575, -1, -1, 3071, 3647, 3790, 3824, 3824, 3790, 3647, 3071, -1, -1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1
OFFSET
0,13
COMMENTS
Row sums are: {-1, -2, -3, -2, 2, 30, 198, 1014, 4854, 28662, 197622, ...}.
FORMULA
T(n, k) = A172452(n) - A172452(k) - A172452(n-k).
T(n, k) = c(n) - c(k) - c(n-k) where c(n) = Product_{j=1..n} A004001(j).
EXAMPLE
Triangle begins as:
-1;
-1, -1;
-1, -1, -1;
-1, 0, 0, -1;
-1, 1, 2, 1, -1;
-1, 7, 9, 9, 7, -1;
-1, 35, 43, 44, 43, 35, -1;
-1, 143, 179, 186, 186, 179, 143, -1;
-1, 575, 719, 754, 760, 754, 719, 575, -1;
-1, 3071, 3647, 3790, 3824, 3824, 3790, 3647, 3071, -1;
-1, 19199, 22271, 22846, 22988, 23016, 22988, 22846, 22271, 19199, -1;
MATHEMATICA
f[n_]:= f[n]= If[n<3, Fibonacci[n], f[f[n-1]] + f[n-f[n-1]]]; (* f=A004001 *)
c[n_]:= Product[f[j], {j, n}]; (* c=A172452 *)
T[n_, k_]:= c[n] - c[k] - c[n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 27 2021 *)
PROG
(Sage)
@CachedFunction
def b(n): return fibonacci(n) if (n<3) else b(b(n-1)) + b(n-b(n-1)) # b=A004001
def c(n): return product(b(j) for j in (1..n)) # c=A172452
def T(n, k): return c(n) - c(k) - c(n-k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 27 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 06 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 27 2021
STATUS
approved