login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172972
Subtraction triangle based on A029826: c(n)=Product[A029826(i),{i,0,n)];t(n,m)=c(n)-c(m)-c(n-m)
0
-1, -1, -1, -1, -3, -1, -1, -1, -1, -1, -1, 0, 2, 0, -1, -1, -1, 2, 2, -1, -1, -1, -1, 1, 2, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 0, 1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 1, 1, -1, -1, -1, -1, 1, 1, 0, 0, 0, 1, 1, -1, -1
OFFSET
0,5
COMMENTS
Row sums are:
{-1, -2, -5, -4, 0, 0, 0, 0, 0, 0, 0,...}.
FORMULA
c(n)=Product[A029826(i),{i,0,n)];
t(n,m)=c(n)-c(m)-c(n-m)
EXAMPLE
{-1},
{-1, -1},
{-1, -3, -1},
{-1, -1, -1, -1},
{-1, 0, 2, 0, -1},
{-1, -1, 2, 2, -1, -1},
{-1, -1, 1, 2, 1, -1, -1},
{-1, -1, 1, 1, 1, 1, -1, -1},
{-1, -1, 1, 1, 0, 1, 1, -1, -1},
{-1, -1, 1, 1, 0, 0, 1, 1, -1, -1},
{-1, -1, 1, 1, 0, 0, 0, 1, 1, -1, -1}
MATHEMATICA
(*A029826 Inverse of Salem polynomial : 1/(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1).*)
p[x_] = (x^(10) + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1); q[ x_] = Expand[x^10*p[1/x]]; a = Table[SeriesCoefficient[Series[1/ q[x], {x, 0, 100}], n], {n, 0, 100}];
c[n_] := Product[a[[m]], {m, 1, n}];
t[n_, m_] := c[n] - (c[m] + c[n - m]);
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Feb 06 2010
STATUS
approved