login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163812
Expansion of (1 - x^5) * (1 - x^6) / ((1 - x) * (1 - x^10)) in powers of x.
4
1, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1
OFFSET
0,1
FORMULA
Euler transform of length 10 sequence [ 1, 0, 0, 0, -1, -1, 0, 0, 0, 1].
a(5*n) = 0 unless n=0.
a(n) = -a(-n) unless n=0. a(n+5) = -a(n) unless n=0 or n=-5.
G.f.: (1 + x^2 + x^4) / (1 - x + x^2 - x^3 + x^4).
a(n) = (-1)^n * A163818(n). Convolution inverse of A163811.
G.f.: A(x) = 1 / (1 - x / ( 1 + x^4 / (1 + x^2))) = 1 + x / (1 - x / (1 + x^3 / (1 + x^2 / (1 + x / (1 - x))))). - Michael Somos, Jan 03 2013
a(n) = A099443(n-1), n>0. - R. J. Mathar, Aug 05 2009
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + x^13 + ...
MATHEMATICA
a[ n_] := Boole[n == 0] + (-1)^Quotient[n, 5] Sign@Mod[n, 5]; (* Michael Somos, Jun 17 2015 *)
PROG
(PARI) {a(n) = (n==0) + [0, 1, 1, 1, 1, 0, -1, -1, -1, -1][n%10 + 1]};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Aug 04 2009
STATUS
approved