OFFSET
0
FORMULA
G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3 + x^4 - x^5) * A(x^5).
G.f.: Product_{k>=0} (1 + x^(5^k) + x^(2*5^k) + x^(3*5^k) + x^(4*5^k) - x^(5^(k+1))).
MATHEMATICA
a[0] = 1; a[n_] := Switch[Mod[n, 5], 0, a[n/5] - a[(n - 5)/5], 1, a[(n - 1)/5], 2, a[(n - 2)/5], 3, a[(n - 3)/5], 4, a[(n - 4)/5]]; Table[a[n], {n, 0, 105}]
nmax = 105; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3 + x^4 - x^5) A[x^5] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 105; CoefficientList[Series[Product[(1 + x^(5^k) + x^(2 5^k) + x^(3 5^k) + x^(4 5^k) - x^(5^(k + 1))), {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 05 2021
STATUS
approved