login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163815
a(n) = n*(2*n^2 + 5*n + 3).
3
0, 10, 42, 108, 220, 390, 630, 952, 1368, 1890, 2530, 3300, 4212, 5278, 6510, 7920, 9520, 11322, 13338, 15580, 18060, 20790, 23782, 27048, 30600, 34450, 38610, 43092, 47908, 53070, 58590, 64480, 70752, 77418, 84490, 91980, 99900, 108262, 117078, 126360, 136120
OFFSET
0,2
FORMULA
Row sums from A155151: a(n) = Sum_{m=1..n} 2*(2*m*n + m + n + 1).
a(n) = 2*A160378(n+1).
G.f.: 2*x*(5+x)/(x-1)^4.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
E.g.f.: (2*x^3 + 11*x^2 + 10*x)*exp(x). - G. C. Greubel, Aug 04 2017
MATHEMATICA
CoefficientList[Series[2*x*(5+x)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 10, 42, 108}, 50](* Vincenzo Librandi, Mar 06 2012 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(2*x*(5+x)/(x-1)^4)) \\ G. C. Greubel, Aug 04 2017
CROSSREFS
Sequence in context: A031146 A372666 A328536 * A108678 A226988 A358249
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 04 2009
EXTENSIONS
Edited and a(4) corrected by R. J. Mathar, Aug 05 2009
STATUS
approved