login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163810
Expansion of (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) in powers of x.
6
1, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1
OFFSET
0,1
FORMULA
Euler transform of length 6 sequence [ -1, -1, -1, 0, 0, 1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 * u * (1 - u) * (2 - v) - (v - u^2).
a(3*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 2) = -1, a(6*n + 4) = a(6*n + 5) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+3) = -a(n) unless n=0 or n=-3.
G.f.: (1 - x)^2 / (1 - x + x^2).
EXAMPLE
G.f. = 1 - x - x^2 + x^4 + x^5 - x^7 - x^8 + x^10 + x^11 - x^13 - x^14 + ...
MATHEMATICA
Join[{1}, LinearRecurrence[{1, -1}, {-1, -1}, 104]] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) {a(n) = (n==0) + [0, -1, -1, 0, 1, 1][n%6 + 1]};
(PARI) {a(n) = (n==0) + (-1)^n * kronecker(-3, n)};
CROSSREFS
A163806(n) = -a(n) unless n=0. A106510(n) = (-1)^n * a(n).
Convolution inverse of A028310. Series reversion of A109081.
Sequence in context: A267208 A106510 A163806 * A163804 A181653 A343159
KEYWORD
sign,easy
AUTHOR
Michael Somos, Nov 07 2007
STATUS
approved