login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156302
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)^2*x^n/n ), a power series in x with integer coefficients.
8
1, 1, 5, 10, 30, 57, 152, 289, 676, 1304, 2809, 5335, 10961, 20487, 40329, 74476, 141914, 258094, 479638, 860025, 1563716, 2767982, 4940567, 8636563, 15173805, 26217392, 45416811, 77629455, 132800937, 224695510, 380079521, 637006921
OFFSET
0,3
COMMENTS
Compare with g.f. for partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(k)^2*a(n-k) for n>0, with a(0) = 1.
Euler transform of A060648. [From Vladeta Jovovic, Feb 14 2009]
It appears that G.f.: A(x)=prod(n=1,infinity, E(x^n)^(-A001615(n))) where E(x) = prod(n=1,infinity,1-x^n). [From Joerg Arndt, Dec 30 2010]
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k) * x^(n*k) / n ). [From Paul D. Hanna, Jan 23 2012]
log(a(n)) ~ 3*(5*zeta(3))^(1/3) * n^(2/3) / 2. - Vaclav Kotesovec, Oct 29 2024
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 57*x^5 + 152*x^6 +...
log(A(x)) = x + 3^2*x^2/2 + 4^2*x^3/3 + 7^2*x^4/4 + 6^2*x^5/5 + 12^2*x^6/6 +...
Also log(A(x)) = (x + 3*x^2 + 4*x^3 + 7*x^4 +...+ sigma(k)*x^k +...)/1 +
(3*x^2 + 7*x^4 + 12*x^6 + 15*x^8 + 18*x^10 +...+ sigma(2*k)*x^(2*k) +...)/2 +
(4*x^3 + 12*x^6 + 13*x^9 + 28*x^12 + 24*x^15 +...+ sigma(3*k)*x^(3*k) +...)/3 +
(7*x^4 + 15*x^8 + 28*x^12 + 31*x^16 + 42*x^20 +...+ sigma(4*k)*x^(4*k) +...)/4 +
(6*x^5 + 18*x^10 + 24*x^15 + 42*x^20 + 31*x^25 +...+ sigma(5*k)*x^(5*k) +...)/5 +...
MATHEMATICA
nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 29 2024 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^2*x^k/k)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^2*a(n-k)))}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)*x^(m*k)/m)+x*O(x^n))), n)}
CROSSREFS
Cf. A000203 (sigma), A000041 (partitions), A178933, A205797.
Sequence in context: A053818 A294286 A133629 * A156234 A048010 A002571
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2009
STATUS
approved