OFFSET
0,3
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..6700
FORMULA
a(0)=0 and a(n)=1/n*sum(k=1,n,sigma(k)^3*a(n-k)) for n>0.
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n*k)^2 * x^(n*k) / n ). [Paul D. Hanna, Jan 31 2012]
From Vaclav Kotesovec, Oct 30 2024: (Start)
log(a(n)) ~ 2^(7/4) * c^(1/4) * Pi^(3/2) * zeta(3)^(1/4) * n^(3/4) / (3^(3/2) * 5^(1/4)), where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.8359835743341928677044245715803848964089818378791769798895797934086403174189...
Equivalently, log(a(n)) ~ 3.2753680082113515869730831738879060384726246... * n^(3/4). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 14*x^2 + 35*x^3 + 205*x^4 + 521*x^5 + 2507*x^6 +...
such that, by definition,
log(A(x)) = x + 3^3*x^2/2 + 4^3*x^3/3 + 7^3*x^4/4 + 6^3*x^5/5 + 12^3*x^6/6 +...
MATHEMATICA
nmax = 30; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[DivisorSigma[1, k]^3 * a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 30 2024 *)
PROG
(PARI) N=100; v=Vec(exp(sum(k=1, N, sigma(k)^3*x^k/k)+x*O(x^N)))
(PARI) a(n)=if(n==0, 1, (1/n)*sum(k=1, n, sigma(k)^3*a(n-k)))
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)^3*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna */
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sum(k=1, n\m, sigma(m*k)^2*x^(m*k)/m)+x*O(x^n))), n)} /* Paul D. Hanna */
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Dec 30 2010
STATUS
approved