login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156234
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*A000204(n)*x^n/n ).
6
1, 1, 5, 10, 30, 63, 170, 355, 880, 1875, 4349, 9189, 20810, 43355, 95140, 198247, 424527, 875965, 1849535, 3781820, 7873167, 16005196, 32883560, 66390850, 135198990, 271051271, 546931398, 1090751095, 2183512495, 4329540830
OFFSET
0,3
COMMENTS
Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Fibonacci numbers: exp( Sum_{n>=1} A000204(n)*x^n/n ) where A000204 is the Lucas numbers.
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(n)*A000204(k)*a(n-k) for n>0, with a(0) = 1.
G.f.: Product_{n>=1} 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Logarithmic derivative yields A225528.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 63*x^5 + 170*x^6 + 355*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 + ...
Also, the g.f. equals the product:
A(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) * ...).
MAPLE
N:= 100: # to get a(0) to a(N)
G:= exp(add(numtheory:-sigma(n)*lucas(n)*x^n/n, n=1..N)):
S:= series(G, x, N+1):
seq(coeff(S, x, i), i=0..N); # Robert Israel, Dec 23 2015
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)*(fibonacci(k-1)+fibonacci(k+1))*x^k/k)+x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(prod(m=1, n, 1/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A225528, A000203 (sigma), A000204 (Lucas), A000041 (partitions), A000045.
Sequence in context: A294286 A133629 A156302 * A048010 A002571 A077916
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2009
STATUS
approved