login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294286
Sum of the squares of the parts in the partitions of n into two distinct parts.
9
0, 0, 5, 10, 30, 46, 91, 124, 204, 260, 385, 470, 650, 770, 1015, 1176, 1496, 1704, 2109, 2370, 2870, 3190, 3795, 4180, 4900, 5356, 6201, 6734, 7714, 8330, 9455, 10160, 11440, 12240, 13685, 14586, 16206, 17214, 19019, 20140, 22140, 23380, 25585, 26950, 29370
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i^2 + (n-i)^2.
From David A. Corneth, Oct 27 2017: (Start)
For odd n, a(n) = n^3/3 - n^2/2 + n/6 = A000330(n + 1).
For even n, a(n) = n^3/3 - 3*n^2/4 + n/6.
(End)
From Colin Barker, Nov 04 2017: (Start)
G.f.: x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7.
(End)
a(n) = n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6. - Wesley Ivan Hurt, Dec 03 2023
EXAMPLE
For n = 6, there are two ways of partitioning 6 into two distinct parts: 6 = 1+5 and 6 = 2+4. So a(6) = 1^2 + 5^2 + 2^2 + 4^2 = 46.
For n = 7, there are three ways of partitioning 7 into two distinct parts: 7 = 1+6, 7 = 2+5, and 7 = 3+4. So a(7) = 1^2 + 6^2 + 2^2 + 5^2 + 3^2 + 4^2 = 91. - Michael B. Porter, Nov 05 2017
MATHEMATICA
Table[Sum[i^2 + (n - i)^2, {i, Floor[(n-1)/2]}], {n, 40}]
Table[Total[Flatten[Select[IntegerPartitions[n, {2}], #[[1]]!=#[[2]]&]]^2], {n, 50}] (* Harvey P. Dale, Dec 02 2022 *)
PROG
(PARI) first(n) = my(res = vector(n, i, i^3 / 3 - i^2 / 2 + i / 6)); forstep(i = 2, n, 2, res[i] -= i^2 >> 2); res \\ David A. Corneth, Oct 27 2017
(PARI) concat(vector(2), Vec(x^3*(5 + 5*x + 5*x^2 + x^3) / ((1 - x)^4*(1 + x)^3) + O(x^60))) \\ Colin Barker, Nov 04 2017
(Magma) [n*(2*n^2-3*n*(5+(-1)^n)/4+1)/6 : n in [1..60]]; // Wesley Ivan Hurt, Dec 03 2023
CROSSREFS
Cf. A000330.
Sequence in context: A005514 A069921 A053818 * A133629 A156302 A156234
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 26 2017
STATUS
approved