login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154870
Period 6: repeat [7, 5, 1, -7, -5, -1].
3
7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1, -7, -5, -1, 7, 5, 1
OFFSET
0,1
COMMENTS
The sequence b(n) = (-A153130(n)) mod 9 = A153130(n+3) = A146501(n-1) = 8, 7, 5, 1, 2, 4,... has period length 6. This here is a(n)=b(n)-A153130(n).
a(n) is (-1)^(n+1) * numerator of F(n) where F(n) = f(F(n-1)) starting from F(0) = -7/4 and step f(z) = z^2 -29/16. - Nicolas Bělohoubek, Nov 20 2024
LINKS
Holly Krieger and Brady Haran, A Fascinating Thing about Fractions, Numberphile video, Dec 15 2019.
FORMULA
a(n) = -a(n-3) for n>2; G.f.: (7+5*x+x^2)/((1+x)*(1-x+x^2)). [R. J. Mathar, Jan 23 2009]
a(n) = cos(n*Pi) + 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3). - Wesley Ivan Hurt, Jun 20 2016
MAPLE
A154870:=n->[7, 5, 1, -7, -5, -1][(n mod 6)+1]: seq(A154870(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
MATHEMATICA
PadRight[{}, 100, {7, 5, 1, -7, -5, -1}] (* Wesley Ivan Hurt, Jun 20 2016 *)
PROG
(Magma) &cat [[7, 5, 1, -7, -5, -1]^^20]; // Wesley Ivan Hurt, Jun 20 2016
CROSSREFS
Sequence in context: A377609 A021575 A334632 * A098687 A021137 A330156
KEYWORD
sign,easy,changed
AUTHOR
Paul Curtz, Jan 16 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Jan 23 2009
STATUS
approved