login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154867
A triangular sequence of polynomial coefficients: p(x,n) = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]); q(x,n)= If[n == 0, 1, p(x, n) + x^n*p(1/x, n)].
0
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 35, 35, 16, 1, 1, 32, 105, 130, 105, 32, 1, 1, 64, 322, 490, 490, 322, 64, 1, 1, 128, 994, 1967, 2100, 1967, 994, 128, 1, 1, 256, 3061, 8232, 9597, 9597, 8232, 3061, 256, 1, 1, 512, 9375, 34855, 48405, 45654, 48405
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 4, 10, 30, 104, 406, 1754, 8280, 42294, 231950,...}
FORMULA
p(x,n) = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]);
q(x,n)= If[n == 0, 1, p(x, n) + x^n*p(1/x, n)];
t(n,m)=coefficients(q(x,n)).
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 8, 12, 8, 1},
{1, 16, 35, 35, 16, 1},
{1, 32, 105, 130, 105, 32, 1},
{1, 64, 322, 490, 490, 322, 64, 1},
{1, 128, 994, 1967, 2100, 1967, 994, 128, 1},
{1, 256, 3061, 8232, 9597, 9597, 8232, 3061, 256, 1},
{1, 512, 9375, 34855, 48405, 45654, 48405, 34855, 9375, 512, 1}
MATHEMATICA
Clear[p]; p[x_, n_] = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]);
q[x_, n_] = If[n == 0, 1, p[x, n] + x^n*p[1/x, n]];
Table[FullSimplify[ExpandAll[q[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[q[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A137854 A062715 A100631 * A064298 A256894 A372068
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved