Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 20 2024 15:34:38
%S 7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,
%T -5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,
%U 5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1,-7,-5,-1,7,5,1
%N Period 6: repeat [7, 5, 1, -7, -5, -1].
%C The sequence b(n) = (-A153130(n)) mod 9 = A153130(n+3) = A146501(n-1) = 8, 7, 5, 1, 2, 4,... has period length 6. This here is a(n)=b(n)-A153130(n).
%C a(n) is (-1)^(n+1) * numerator of F(n) where F(n) = f(F(n-1)) starting from F(0) = -7/4 and step f(z) = z^2 -29/16. - _Nicolas Bělohoubek_, Nov 20 2024
%H Holly Krieger and Brady Haran, <a href="https://www.youtube.com/watch?v=N92w4e-hrA4">A Fascinating Thing about Fractions</a>, Numberphile video, Dec 15 2019.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1).
%F a(n) = -a(n-3) for n>2; G.f.: (7+5*x+x^2)/((1+x)*(1-x+x^2)). [_R. J. Mathar_, Jan 23 2009]
%F a(n) = cos(n*Pi) + 6*cos(n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3). - _Wesley Ivan Hurt_, Jun 20 2016
%p A154870:=n->[7, 5, 1, -7, -5, -1][(n mod 6)+1]: seq(A154870(n), n=0..100); # _Wesley Ivan Hurt_, Jun 20 2016
%t PadRight[{}, 100, {7, 5, 1, -7, -5, -1}] (* _Wesley Ivan Hurt_, Jun 20 2016 *)
%o (Magma) &cat [[7, 5, 1, -7, -5, -1]^^20]; // _Wesley Ivan Hurt_, Jun 20 2016
%Y Cf. A146501, A153130.
%K sign,easy
%O 0,1
%A _Paul Curtz_, Jan 16 2009
%E Edited and extended by _R. J. Mathar_, Jan 23 2009