login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143651
(0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^1 + 2, 3^2 + 2, 5^2 + 3, 7^2 + 3, 3^2 + 2, 5^11 + 2, 2^3 + 13, ...).
0
2, 11, 28, 52, 11, 48828127, 21, 131, 29, 292, 524290, 35, 60, 532, 245, 8195, 11, 3219905755813179726837609, 274, 35, 138, 78127, 10, 1388, 1594325, 284, 15, 1851, 1333, 48, 2213, 2189, 34, 129140165, 8245, 11, 48828127, 2190, 390, 3483, 304
OFFSET
1,1
EXAMPLE
0^1 + 2 = 0 + 2 = 2 = a(1).
3^2 + 2 = 9 + 2 = 11 = a(2).
5^2 + 3 = 25 + 3 = 28 = a(3).
7^2 + 3 = 49 + 3 = 52 = a(4).
3^2 + 2 = 9 + 2 = 11 = a(5).
5^11 + 2 = 48828125 + 2 = 48828127 = a(6).
2^3 + 13 = 8 + 13 = 21 = a(7).
2^7 + 3 = 128 + 3 = 131 = a(8), etc.
MAPLE
pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0, 1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a), op(1, p)] ; if op(2, p) > 1 then a := [op(a), op(2, p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d, ", op(n, pL)^op(n+1, pL)+op(n+2, pL) ) ; od: # R. J. Mathar, Nov 06 2008
CROSSREFS
Sequence in context: A139211 A254196 A161527 * A054552 A296288 A277361
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(11) corrected, extended by R. J. Mathar, Nov 06 2008
STATUS
approved