Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 05 2015 03:00:36
%S 2,11,28,52,11,48828127,21,131,29,292,524290,35,60,532,245,8195,11,
%T 3219905755813179726837609,274,35,138,78127,10,1388,1594325,284,15,
%U 1851,1333,48,2213,2189,34,129140165,8245,11,48828127,2190,390,3483,304
%N (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^1 + 2, 3^2 + 2, 5^2 + 3, 7^2 + 3, 3^2 + 2, 5^11 + 2, 2^3 + 13, ...).
%e 0^1 + 2 = 0 + 2 = 2 = a(1).
%e 3^2 + 2 = 9 + 2 = 11 = a(2).
%e 5^2 + 3 = 25 + 3 = 28 = a(3).
%e 7^2 + 3 = 49 + 3 = 52 = a(4).
%e 3^2 + 2 = 9 + 2 = 11 = a(5).
%e 5^11 + 2 = 48828125 + 2 = 48828127 = a(6).
%e 2^3 + 13 = 8 + 13 = 21 = a(7).
%e 2^7 + 3 = 128 + 3 = 131 = a(8), etc.
%p pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0,1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a),op(1,p)] ; if op(2,p) > 1 then a := [op(a),op(2,p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d,", op(n, pL)^op(n+1, pL)+op(n+2,pL) ) ; od: # _R. J. Mathar_, Nov 06 2008
%Y Cf. A141269, A141270.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Nov 01 2008
%E a(11) corrected, extended by _R. J. Mathar_, Nov 06 2008