login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254196
a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
3
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
OFFSET
1,2
COMMENTS
The denominators are A038110(n+1).
a(n)/A038110(n+1) = Sum_{k >=2} 1/k where k is a positive integer whose prime factors are among the first n primes. In particular, for n=1,2,3,4,5, a(n)/A038110(n+1) is the sum of the reciprocals of the terms (excepting the first, 1) in A000079, A003586, A051037, A002473, A051038.
Appears to be a duplicate of A161527. - Michel Marcus, Aug 05 2019
LINKS
Eric Weisstein's World of Mathematics, Smooth Number
FORMULA
a(n) = A038111(n+1)/prime(n+1)-A038110(n+1). - Robert Israel, Jan 28 2015, corrected Jul 07 2019.
EXAMPLE
a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
MAPLE
seq(numer(mul(1/(1-1/ithprime(i)), i=1..n)-1), n=1..20); # Robert Israel, Jan 28 2015
MATHEMATICA
Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n, 1, 20}]]
b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
PROG
(PARI) a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 26 2015
STATUS
approved